کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10352394 865090 2016 39 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A method to improve the stability and accuracy of ANN- and SVM-based time series models for long-term groundwater level predictions
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
A method to improve the stability and accuracy of ANN- and SVM-based time series models for long-term groundwater level predictions
چکیده انگلیسی
The prediction of long-term groundwater level fluctuations is necessary to effectively manage groundwater resources and to assess the effects of changes in rainfall patterns on groundwater resources. In the present study, a weighted error function approach was utilised to improve the performance of artificial neural network (ANN)- and support vector machine (SVM)-based recursive prediction models for the long-term prediction of groundwater levels in response to rainfall. The developed time series models were applied to groundwater level data from 5 groundwater-monitoring stations in South Korea. The results demonstrated that the weighted error function approach can improve the stability and accuracy of recursive prediction models, especially for ANN models. The comparison of the model performance showed that the recursive prediction performance of the SVM was superior to the performance of the ANN in this case study.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Geosciences - Volume 90, Part A, May 2016, Pages 144-155
نویسندگان
, , , , ,