کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10352402 | 865110 | 2011 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Simulating multiple class urban land-use/cover changes by RBFN-based CA model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Land use systems are complex adaptive systems, and they are characterized by emergence, nonlinearity, feedbacks, self organization, path dependence, adaptation, and multiple-scale characteristics. Land use/cover change has been recognized as one of the major drivers of global environmental change. This paper presents a coupled Cellular Automata (CA) and Radial Basis Function Neural (RBFN) Network model, which combines Geographic Information Systems (GIS) to contribute to the understanding of the complex land use/cover change process. In this model, GIS analysis is used to generate spatial drivers of land use/cover changes, and RBFN is trained to extract model parameters. Through the RBFN-CA model, the conversion probabilities of each cell from its initial land use state to the target type can be generated automatically. Future land use/cover scenarios are projected by using generated parameters in the model training process. This RBFN-CA model is tested based on the comparison of model output and the real data. A BPN-CA model is also built and compared with the RBFN-CA model by using a variety of calibration metrics, including confusion matrix, figure of merit, and landscape metrics. Both the location and landscape metrics based assessment for model simulation indicate that the RBFN-CA model performs better than the BPN-CA model for simulating land use changes in the study area. Therefore the RBFN-CA model is capable of simulating multiple classes of land use/cover changes and can be used as a useful communication environment for stakeholders involved in land use decision-making.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Geosciences - Volume 37, Issue 2, February 2011, Pages 111-121
Journal: Computers & Geosciences - Volume 37, Issue 2, February 2011, Pages 111-121
نویسندگان
Yang Wang, Shuangcheng Li,