کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10352833 | 865230 | 2005 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Using self-organizing maps to visualize high-dimensional data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Understanding relationships in high-dimension datasets requires proper data visualization. Two examples of high-dimension data are major-element geochemical and hyperspectral data. Major-element geochemical data consists of eleven oxide measurements for each sample. Well-known correlations exist for these types of data, i.e., the negative relationship between SiO2 and MgO; other more subtle relationships are rarely apparent. Hyperspectral data is by definition high-dimension data consisting of upwards of 100+ discrete measurements of the electromagnetic spectrum for a material. Hyperspectral data are a significant challenge to interpret when evaluating information for heterogeneous materials such as rocks. Self-organizing maps (SOMs) provide insight into complex relationships in high-dimension datasets while preserving the inherent topological relations and simultaneously producing a statistical model of the dataset. Another benefit of SOMs is their generation of composite vectors which can be analyzed to extract the relative importance of each component during classification. The veracity of SOMs is demonstrated using two datasets from the Spanish peaks intrusive complex of south-central Colorado including major-element geochemical and hyperspectral measurements.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Geosciences - Volume 31, Issue 5, June 2005, Pages 531-544
Journal: Computers & Geosciences - Volume 31, Issue 5, June 2005, Pages 531-544
نویسندگان
Brian S. Penn,