کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10356034 867598 2014 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A two-dimensional fourth-order unstructured-meshed Euler solver based on the CESE method
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
A two-dimensional fourth-order unstructured-meshed Euler solver based on the CESE method
چکیده انگلیسی
In this paper, Changʼs one-dimensional high-order CESE method [1] is extended to a two-dimensional, unstructured-triangular-meshed Euler solver. This fourth-order CESE method retains all favorable attributes of the original second-order CESE method, including: (i) flux conservation in space and time without using an approximated Riemann solver, (ii) genuine multi-dimensional algorithm without dimensional splitting, (iii) the CFL constraint for stable calculation remains to be ⩽1, (iv) the use of the most compact mesh stencil, involving only the immediate neighboring cells surrounding the cell where the solution at a new time step is sought, and (v) an explicit, unified space-time integration procedure without using a quadrature integration procedure. To demonstrate the new algorithm, three numerical examples are presented: (i) a moving vortex, (ii) acoustic wave interaction, and (iii) supersonic flow over a blunt body. Case 1 shows fourth-order convergence through mesh refinement. In Case 2, the nonlinear Euler solver is applied to simulate linear waves. In Case 3, superb shock capturing capabilities of the new fourth-order method without the carbuncle effect is demonstrated.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 257, Part A, 15 January 2014, Pages 981-999
نویسندگان
, , , ,