کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10356475 | 867793 | 2012 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Adaptive multilayer method of fundamental solutions using a weighted greedy QR decomposition for the Laplace equation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The mixed boundary value problem of the Laplace equation is considered. The method of fundamental solutions (MFS) approximates the exact solution to the Laplace equation by a linear combination of independent fundamental solutions with different source points. The accuracy of the numerical solution depends on the distribution of source points. In this paper, a weighted greedy QR decomposition (GQRD) is proposed to choose significant source points by introducing a weighting parameter. An index called an average degree of approximation is defined to show the efficiency of the proposed method. From numerical experiments, it is concluded that the numerical solution tends to be more accurate when the average degree of approximation is larger, and that the proposed method can yield more accurate solutions with a less number of source points than the conventional GQRD.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 231, Issue 21, 30 August 2012, Pages 7118-7132
Journal: Journal of Computational Physics - Volume 231, Issue 21, 30 August 2012, Pages 7118-7132
نویسندگان
Takemi Shigeta, D.L. Young, Chein-Shan Liu,