کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10356614 | 867802 | 2012 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Variational collision integrator for polymer chains
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The numerical simulation of many-particle systems (e.g. in molecular dynamics) often involves constraints of various forms. We present a symplectic integrator for mechanical systems with holonomic (bilateral) and unilateral contact constraints, the latter being in the form of a non-penetration condition. The scheme is based on a discrete variant of Hamilton's principle in which both the discrete trajectory and the unknown collision time are varied (cf. [R. Fetecau, J. Marsden, M. Ortiz, M. West, Nonsmooth Lagrangian mechanics and variational collision integrators, SIAM J. Appl. Dyn. Syst. 2 (2003) 381-416]). As a consequence, the collision event enters the discrete equations of motion as an unknown that has to be computed on-the-fly whenever a collision is imminent. The additional bilateral constraints are efficiently dealt with employing a discrete null space reduction (including a projection and a local reparametrisation step) which considerably reduces the number of unknowns and improves the condition number during each time-step as compared to a standard treatment with Lagrange multipliers. We illustrate the numerical scheme with a simple example from polymer dynamics, a linear chain of beads, and test it against other standard numerical schemes for collision problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 231, Issue 10, 20 May 2012, Pages 3896-3911
Journal: Journal of Computational Physics - Volume 231, Issue 10, 20 May 2012, Pages 3896-3911
نویسندگان
Sigrid Leyendecker, Carsten Hartmann, Michael Koch,