کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10357146 867850 2009 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nondissipative and energy-stable high-order finite-difference interface schemes for 2-D patch-refined grids
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Nondissipative and energy-stable high-order finite-difference interface schemes for 2-D patch-refined grids
چکیده انگلیسی
A class of finite-difference interface schemes suitable for two-dimensional cell-centered grids with patch-refinement and step-changes in resolution is presented. Grids of this type are generated by adaptive mesh refinement methods according to resolution needs dictated by the physics of the problem being modeled. For these grids, coarse and fine nodes are not aligned at the mesh interfaces, resulting in hanging nodes. Three distinct geometries are identified at the interfaces of a domain with interior patch-refinement: edges, concave corners and convex corners. Asymptotic stability in time of the numerical scheme is achieved by imposing a summation-by-parts condition on the interface closure, which is thus also nondissipative. Interface stencils corresponding to an explicit fourth-order finite-difference scheme are presented for each geometry. To preserve stability, a reduction in local accuracy is required at the corner geometries. It is also found that no second-order accurate solution exists that satisfies the summation-by-parts condition. Tests using the 2-D scalar advection equation and an inviscid compressible vortex support the stability and accuracy of these stencils for both linear and nonlinear problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 228, Issue 14, 1 August 2009, Pages 5280-5297
نویسندگان
, , ,