کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10357801 | 867912 | 2005 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An adaptive multi-element generalized polynomial chaos method for stochastic differential equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We formulate a Multi-Element generalized Polynomial Chaos (ME-gPC) method to deal with long-term integration and discontinuities in stochastic differential equations. We first present this method for Legendre-chaos corresponding to uniform random inputs, and subsequently we generalize it to other random inputs. The main idea of ME-gPC is to decompose the space of random inputs when the relative error in variance becomes greater than a threshold value. In each subdomain or random element, we then employ a generalized polynomial chaos expansion. We develop a criterion to perform such a decomposition adaptively, and demonstrate its effectiveness for ODEs, including the Kraichnan-Orszag three-mode problem, as well as advection-diffusion problems. The new method is similar to spectral element method for deterministic problems but with h-p discretization of the random space.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 209, Issue 2, 1 November 2005, Pages 617-642
Journal: Journal of Computational Physics - Volume 209, Issue 2, 1 November 2005, Pages 617-642
نویسندگان
Xiaoliang Wan, George Em Karniadakis,