کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10358589 868543 2014 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Parallel eigenvalue calculation based on multiple shift-invert Lanczos and contour integral based spectral projection method
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Parallel eigenvalue calculation based on multiple shift-invert Lanczos and contour integral based spectral projection method
چکیده انگلیسی
We discuss the possibility of using multiple shift-invert Lanczos and contour integral based spectral projection method to compute a relatively large number of eigenvalues of a large sparse and symmetric matrix on distributed memory parallel computers. The key to achieving high parallel efficiency in this type of computation is to divide the spectrum into several intervals in a way that leads to optimal use of computational resources. We discuss strategies for dividing the spectrum. Our strategies make use of an eigenvalue distribution profile that can be estimated through inertial counts and cubic spline fitting. Parallel sparse direct methods are used in both approaches. We use a simple cost model that describes the cost of computing k eigenvalues within a single interval in terms of the asymptotic cost of sparse matrix factorization and triangular substitutions. Several computational experiments are performed to demonstrate the effect of different spectrum division strategies on the overall performance of both multiple shift-invert Lanczos and the contour integral based method. We also show the parallel scalability of both approaches in the strong and weak scaling sense. In addition, we compare the performance of multiple shift-invert Lanczos and the contour integral based spectral projection method on a set of problems from density functional theory (DFT).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Parallel Computing - Volume 40, Issue 7, July 2014, Pages 195-212
نویسندگان
, , , , ,