کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10360378 | 869792 | 2014 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
k-NN classification of handwritten characters via accelerated GAT correlation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper addresses the problem of reinforcing the ability of the k-NN classification of handwritten characters via distortion-tolerant template matching techniques with a limited quantity of data. We compare three kinds of matching techniques: the conventional simple correlation, the tangent distance, and the global affine transformation (GAT) correlation. Although the k-NN classification method is straightforward and powerful, it consumes a lot of time. Therefore, to reduce the computational cost of matching in k-NN classification, we propose accelerating the GAT correlation method by reformulating its computational model and adopting efficient lookup tables. Recognition experiments performed on the IPTP CDROM1B handwritten numerical database show that the matching techniques of the simple correlation, the tangent distance, and the accelerated GAT correlation achieved recognition rates of 97.07%, 97.50%, and 98.70%, respectively. The computation time ratios of the tangent distance and the accelerated GAT correlation to the simple correlation are 26.3 and 36.5 to 1.0, respectively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 47, Issue 3, March 2014, Pages 994-1001
Journal: Pattern Recognition - Volume 47, Issue 3, March 2014, Pages 994-1001
نویسندگان
Toru Wakahara, Yukihiko Yamashita,