کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10360635 869872 2005 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Smoothing and compression with stochastic k-testable tree languages
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Smoothing and compression with stochastic k-testable tree languages
چکیده انگلیسی
In this paper, we describe some techniques to learn probabilistic k-testable tree models, a generalization of the well-known k-gram models, that can be used to compress or classify structured data. These models are easy to infer from samples and allow for incremental updates. Moreover, as shown here, backing-off schemes can be defined to solve data sparseness, a problem that often arises when using trees to represent the data. These features make them suitable to compress structured data files at a better rate than string-based methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 38, Issue 9, September 2005, Pages 1420-1430
نویسندگان
, , ,