کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10360738 | 869894 | 2015 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Nuclear-L1 norm joint regression for face reconstruction and recognition with mixed noise
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Occlusion, real disguise and illumination are still the common difficulties encountered in face recognition. The sparse representation based classifier (SRC) has shown a great potential in handling pixel-level sparse noise, while the nuclear norm based matrix regression (NMR) model has been demonstrated to be powerful for dealing with the image-wise structural noise. Both methods, however, might be not very effective for handling the mixed noise: the structural noise plus the sparse noise. In this paper, we present two nuclear-L1 norm joint matrix regression (NL1R) models for face recognition with mixed noise, which are derived by using MAP (maximum a posteriori probability estimation). The first model considers the mixed noise as a whole, while the second model assumes the mixed noise is an additive combination of two independent componenral nts: sparse noise and structuoise. The proposed models can be solved by the alternating direction method of multipliers (ADMM). We validate the effectiveness of the proposed models through a series of experiments on face reconstruction and recognition.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 48, Issue 12, December 2015, Pages 3811-3824
Journal: Pattern Recognition - Volume 48, Issue 12, December 2015, Pages 3811-3824
نویسندگان
Lei Luo, Jian Yang, Jianjun Qian, Ying Tai,