کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10360777 | 869902 | 2005 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Boosting image classification with LDA-based feature combination for digital photograph management
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Image classification is of great importance for digital photograph management. In this paper we propose a general statistical learning method based on boosting algorithm to perform image classification for photograph annotation and management. The proposed method employs both features extracted from image content (i.e., color moment and edge direction histogram) and features from the EXIF metadata recorded by digital cameras. To fully utilize potential feature correlations and improve the classification accuracy, feature combination is needed. We incorporate linear discriminant analysis (LDA) algorithm to implement linear combinations between selected features and generate new combined features. The combined features are used along with the original features in boosting algorithm for improving classification performance. To make the proposed learning algorithm more efficient, we present two heuristics for selective feature combinations, which can significantly reduce training computation without losing performance. The proposed image classification method has several advantages: small model size, computational efficiency and improved classification performance based on LDA feature combination.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 38, Issue 6, June 2005, Pages 887-901
Journal: Pattern Recognition - Volume 38, Issue 6, June 2005, Pages 887-901
نویسندگان
Xuezheng Liu, Lei Zhang, Mingjing Li, Hongjiang Zhang, Dingxing Wang,