کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10360798 | 869916 | 2005 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Classifier combination based on confidence transformation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper investigates the effects of confidence transformation in combining multiple classifiers using various combination rules. The combination methods were tested in handwritten digit recognition by combining varying classifier sets. The classifier outputs are transformed to confidence measures by combining three scaling functions (global normalization, Gaussian density modeling, and logistic regression) and three confidence types (linear, sigmoid, and evidence). The combination rules include fixed rules (sum-rule, product-rule, median-rule, etc.) and trained rules (linear discriminants and weighted combination with various parameter estimation techniques). The experimental results justify that confidence transformation benefits the combination performance of either fixed rules or trained rules. Trained rules mostly outperform fixed rules, especially when the classifier set contains weak classifiers. Among the trained rules, the support vector machine with linear kernel (linear SVM) performs best while the weighted combination with optimized weights performs comparably well. I have also attempted the joint optimization of confidence parameters and combination weights but its performance was inferior to that of cascaded confidence transformation-combination. This justifies that the cascaded strategy is a right way of multiple classifier combination.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 38, Issue 1, January 2005, Pages 11-28
Journal: Pattern Recognition - Volume 38, Issue 1, January 2005, Pages 11-28
نویسندگان
Cheng-Lin Liu,