کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10361321 870182 2005 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Automatic model selection for the optimization of SVM kernels
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Automatic model selection for the optimization of SVM kernels
چکیده انگلیسی
This approach aims to optimize the kernel parameters and to efficiently reduce the number of support vectors, so that the generalization error can be reduced drastically. The proposed methodology suggests the use of a new model selection criterion based on the estimation of the probability of error of the SVM classifier. For comparison, we considered two more model selection criteria: GACV ('Generalized Approximate Cross-Validation') and VC ('Vapnik-Chernovenkis') dimension. These criteria are algebraic estimates of upper bounds of the expected error. For the former, we also propose a new minimization scheme. The experiments conducted on a bi-class problem show that we can adequately choose the SVM hyper-parameters using the empirical error criterion. Moreover, it turns out that the criterion produces a less complex model with fewer support vectors. For multi-class data, the optimization strategy is adapted to the one-against-one data partitioning. The approach is then evaluated on images of handwritten digits from the USPS database.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 38, Issue 10, October 2005, Pages 1733-1745
نویسندگان
, , ,