کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10361522 | 870355 | 2005 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Correcting the Kullback-Leibler distance for feature selection
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A frequent practice in feature selection is to maximize the Kullback-Leibler (K-L) distance between target classes. In this note we show that this common custom is frequently suboptimal, since it fails to take into account the fact that classification occurs using a finite number of samples. In classification, the variance and higher order moments of the likelihood function should be taken into account to select feature subsets, and the Kullback-Leibler distance only relates to the mean separation. We derive appropriate expressions and show that these can lead to major increases in performance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 26, Issue 11, August 2005, Pages 1675-1683
Journal: Pattern Recognition Letters - Volume 26, Issue 11, August 2005, Pages 1675-1683
نویسندگان
Frans M. Coetzee,