کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10361549 | 870361 | 2005 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A compact space decomposition for effective metric indexing
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The metric space model abstracts many proximity search problems, from nearest-neighbor classifiers to textual and multimedia information retrieval. In this context, an index is a data structure that speeds up proximity queries. However, indexes lose their efficiency as the intrinsic data dimensionality increases. In this paper we present a simple index called list of clusters (LC), which is based on a compact partitioning of the data set. The LC is shown to require little space, to be suitable both for main and secondary memory implementations, and most importantly, to be very resistant to the intrinsic dimensionality of the data set. In this aspect our structure is unbeaten. We finish with a discussion of the role of unbalancing in metric space searching, and how it permits trading memory space for construction time.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 26, Issue 9, 1 July 2005, Pages 1363-1376
Journal: Pattern Recognition Letters - Volume 26, Issue 9, 1 July 2005, Pages 1363-1376
نویسندگان
Edgar Chávez, Gonzalo Navarro,