کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10361679 | 870385 | 2005 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The feature extraction of nonparametric curves based on niche genetic algorithms and multi-population competition
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This research presents an approach utilizing niche genetic algorithms (NGA) other than Hough transform (HT) in detecting nonparametric curves or undefined shapes in a binary image. The optimum curve can be concluded from the evolutions of two populations, which are separately coded along columns and rows, or from multi-population competition. In order to extract the most probable curve as human visualization does, the fitness function based on the human visual tradition model is introduced for the fitness evaluation. The NGA-based curve feature extraction approach has many unique characteristics compared with the HT method, such as the ability to obtain the trajectory and length of nonparametric curves, high convergence speed, and implicit parallelism. For NGA-based curve extraction, this paper offers detailed analysis in the construction of fitness function, NGA, multi-population competition, population reservation, and comparison with Hough transform.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 26, Issue 10, 15 July 2005, Pages 1483-1497
Journal: Pattern Recognition Letters - Volume 26, Issue 10, 15 July 2005, Pages 1483-1497
نویسندگان
Wei Wei, Qi Wang, Hua Wang, Hong Guang Zhang,