کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10361816 | 870409 | 2005 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An adaptive evolutionary algorithm for Volterra system identification
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper a real-coded genetic algorithm (GA) for Volterra system identification is presented. The adaptive GA method suggested here addresses the problem of determining the proper Volterra candidates which closely model the identified nonlinear system. A variable length GA chromosomes will encode the coefficients of the selected candidates. A number of candidates with the highest correlation with the output are selected to undergo the first evolution “era”. The candidates with the least significant contribution in the error reduction process are removed during evolution. Then the next set of candidates are applied into the next era until a solution is found. The proposed GA method handles the issues of detecting the proper Volterra candidates and calculating the associated coefficients as a nonseparable process. The proposed algorithms has produced excellent results in modeling different nonlinear systems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 26, Issue 1, 1 January 2005, Pages 109-119
Journal: Pattern Recognition Letters - Volume 26, Issue 1, 1 January 2005, Pages 109-119
نویسندگان
Hazem M. Abbas, Mohamed M. Bayoumi,