کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10362195 | 870652 | 2005 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hybrid generative/discriminative classifier for unconstrained character recognition
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Handwriting recognition for hand-held devices like PDAs requires very accurate and adaptive classifiers. It is such a complex classification problem that it is quite usual now to make co-operate several classification methods. In this paper, we present an original two stages recognizer. The first stage is a model-based classifier which store an exhaustive set of character models. The second stage is a pairwise classifier which separate the most ambiguous pairs of classes. This hybrid architecture is based on the idea that the correct class almost systematically belongs to the two more relevant classes found by the first classifier. Experiments on a 80,000 examples database show a 30% improvement on a 62 classes recognition problem. Moreover, we show experimentally that such an architecture suits perfectly for incremental classification.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 26, Issue 12, September 2005, Pages 1840-1848
Journal: Pattern Recognition Letters - Volume 26, Issue 12, September 2005, Pages 1840-1848
نویسندگان
Lionel Prevost, Loïc Oudot, Alvaro Moises, Christian Michel-Sendis, Maurice Milgram,