| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 10368589 | 874919 | 2015 | 27 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Feature selection methods and their combinations in high-dimensional classification of speaker likability, intelligibility and personality traits
												
											ترجمه فارسی عنوان
													روش انتخاب ویژگی ها و ترکیب آنها در طبقه بندی با ابعاد بالا قابلیت پذیر بودن سخنرانی، ظرافت و ویژگی های شخصیتی 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												انتخاب ویژگی، تشخیص الگو، فراگیری ماشین، زبانشناسی کامپیوتری،
																																							
												موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													 پردازش سیگنال
												
											چکیده انگلیسی
												This study focuses on feature selection in paralinguistic analysis and presents recently developed supervised and unsupervised methods for feature subset selection and feature ranking. Using the standard k-nearest-neighbors (kNN) rule as the classification algorithm, the feature selection methods are evaluated individually and in different combinations in seven paralinguistic speaker trait classification tasks. In each analyzed data set, the overall number of features highly exceeds the number of data points available for training and evaluation, making a well-generalizing feature selection process extremely difficult. The performance of feature sets on the feature selection data is observed to be a poor indicator of their performance on unseen data. The studied feature selection methods clearly outperform a standard greedy hill-climbing selection algorithm by being more robust against overfitting. When the selection methods are suitably combined with each other, the performance in the classification task can be further improved. In general, it is shown that the use of automatic feature selection in paralinguistic analysis can be used to reduce the overall number of features to a fraction of the original feature set size while still achieving a comparable or even better performance than baseline support vector machine or random forest classifiers using the full feature set. The most typically selected features for recognition of speaker likability, intelligibility and five personality traits are also reported.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Speech & Language - Volume 29, Issue 1, January 2015, Pages 145-171
											Journal: Computer Speech & Language - Volume 29, Issue 1, January 2015, Pages 145-171
نویسندگان
												Jouni Pohjalainen, Okko Räsänen, Serdar Kadioglu, 
											