| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 10368601 | 874936 | 2005 | 26 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Estimation of stochastic context-free grammars and their use as language models
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													 پردازش سیگنال
												
											پیش نمایش صفحه اول مقاله
												
												چکیده انگلیسی
												This paper is devoted to the estimation of stochastic context-free grammars (SCFGs) and their use as language models. Classical estimation algorithms, together with new ones that consider a certain subset of derivations in the estimation process, are presented in a unified framework. This set of derivations is chosen according to both structural and statistical criteria. The estimated SCFGs have been used in a new hybrid language model to combine both a word-based n-gram, which is used to capture the local relations between words, and a category-based SCFG together with a word distribution into categories, which is defined to represent the long-term relations between these categories. We describe methods for learning these stochastic models for complex tasks, and we present an algorithm for computing the word transition probability using this hybrid language model. Finally, experiments on the UPenn Treebank corpus show significant improvements in the test set perplexity with regard to the classical word trigram models.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Speech & Language - Volume 19, Issue 3, July 2005, Pages 249-274
											Journal: Computer Speech & Language - Volume 19, Issue 3, July 2005, Pages 249-274
نویسندگان
												J.M. BenedÃ, J.A. Sánchez,