کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10416410 901270 2005 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Cauchy-Riemann conditions and localized asymptotic solutions of the linearized shallow-water equations
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
The Cauchy-Riemann conditions and localized asymptotic solutions of the linearized shallow-water equations
چکیده انگلیسی
Singular solutions of the two-dimensional shallow-water equations with algebraic singularities of the “square root” type, which have been studied before [1-4], propagate along the trajectories of the external velocity field, over which this field satisfies the Cauchy-Riemann conditions. In other words, the differential of the phase flow on such a trajectory is proportional to an orthogonal operator. It turns out that in the linear approximation this situation is strongly linked with the “spreading” effect of solutions of the hydrodynamic equations (cf. [5,6]); namely, a localized asymptotic solution of the Cauchy problem for the linearized shallowwater equations maintains its form (i.e. does not spread) if and only if the Cauchy-Riemann conditions hold on the trajectory of the outer flow along which the disturbance is propagating.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Applied Mathematics and Mechanics - Volume 69, Issue 5, 2005, Pages 720-725
نویسندگان
, , ,