کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10418139 | 902660 | 2005 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Parameter identification by neural network for intelligent deep drawing of axisymmetric workpieces
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی صنعتی و تولید
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Intelligent deep drawing for axisymmetric workpieces is an important research field of intelligent sheet metal forming, and real-time identification of parameters is a key technology for intelligent deep drawing. This paper presents a feed-forward neural network model based on the LM algorithm (put forward by Levenberg and Marquardt), which is established to realize real-time identification of material properties and friction coefficient for deep drawing of an axisymmetric workpiece. Compared with the previous BP model (neural network based on back propagation algorithm) and GA-ENN (evolutionary neural network based on genetic algorithm) model, the error goal of parameter identification by the LM model is stepped downward to a new level. Therefore, accurate parameter identification, which provides preconditions as well as assurance for accurate prediction and control, lays the basis for intelligent deep drawing of sheet metal.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Materials Processing Technology - Volume 166, Issue 3, 20 August 2005, Pages 387-391
Journal: Journal of Materials Processing Technology - Volume 166, Issue 3, 20 August 2005, Pages 387-391
نویسندگان
Jun Zhao, Fengquin Wang,