| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 10420666 | 905153 | 2005 | 11 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Simulation of strongly non-Gaussian processes using Karhunen-Loeve expansion
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													سایر رشته های مهندسی
													مهندسی مکانیک
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												The non-Gaussian Karhunen-Loeve (K-L) expansion is very attractive because it can be extended readily to non-stationary and multi-dimensional fields in a unified way. However, for strongly non-Gaussian processes, the original procedure is unable to match the distribution tails well. This paper proposes an effective solution to this tail mismatch problem using a modified orthogonalization technique that reduces the degree of shuffling within columns containing empirical realizations of the K-L random variables. Numerical examples demonstrate that the present algorithm is capable of matching highly non-Gaussian marginal distributions and stationary/non-stationary covariance functions simultaneously to a very accurate degree. The ability to converge correctly to an abrupt lower bound in the target marginal distributions studied is noteworthy.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Probabilistic Engineering Mechanics - Volume 20, Issue 2, April 2005, Pages 188-198
											Journal: Probabilistic Engineering Mechanics - Volume 20, Issue 2, April 2005, Pages 188-198
نویسندگان
												K.K. Phoon, H.W. Huang, S.T. Quek,