کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10427253 | 908664 | 2005 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Existence and nonexistence of time-global solutions to damped wave equation on half-line
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
On the half-line R+=(0,â) the initial-boundary value problems with null-Dirichlet boundary for both the semilinear heat equation and damped wave equation are considered. The critical exponent Ïc(N,k) of semilinear term for the existence and nonexistence about the semilinear heat equation on the halved space DN,k=R+kÃRN-k is given by Ïc(N,k)=1+2/(N+k) (J. Appl. Math. Phys. 39 (1988) 135-149; Arch. Rational Mech. Anal. 109 (1990) 63-71). Since the damped wave equation is expected to be close to the heat equation (J. Differential Equations 191 (2003) 445-469; Math. Z. 244 (2003) 631-649), the critical exponent for the semilinear damped wave equation is expected to be same as that of the semilinear heat equation. However, there is no blow-up result on the halved space for the damped wave equation. In this paper, the exponent Ïc(1,1)=2 is shown to be critical for the existence and nonexistence of time-global solution to both the semilinear heat equation and damped wave equation on the half-line R+, together with the derivation of the blow-up time. For the proof the explicit formulas of solutions are used in a similar fashion to those in Li and Zhou (Discrete Continuous Dynamic Systems 1 (1995) 503-520).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 61, Issue 6, 1 June 2005, Pages 931-960
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 61, Issue 6, 1 June 2005, Pages 931-960
نویسندگان
Kenji Nishihara, Huijiang Zhao,