کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10429180 909698 2005 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multivariate Statistical Process Monitoring Using Robust Nonlinear Principal Component Analysis
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Multivariate Statistical Process Monitoring Using Robust Nonlinear Principal Component Analysis
چکیده انگلیسی
The principal component analysis (PCA) algorithm is widely applied in a diverse range of fields for performance assessment, fault detection, and diagnosis. However, in the presence of noise and gross errors, the nonlinear PCA (NLPCA) using autoassociative bottle-neck neural networks is so sensitive that the obtained model differs significantly from the underlying system. In this paper, a robust version of NLPCA is introduced by replacing the generally used error criterion mean squared error with a mean log squared error. This is followed by a concise analysis of the corresponding training method. A novel multivariate statistical process monitoring (MSPM) scheme incorporating the proposed robust NLPCA technique is then investigated and its efficiency is assessed through application to an industrial fluidized catalytic cracking plant. The results demonstrate that, compared with NLPCA, the proposed approach can effectively reduce the number of false alarms and is, hence, expected to better monitor real-world processes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Tsinghua Science & Technology - Volume 10, Issue 5, October 2005, Pages 582-586
نویسندگان
, ,