کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10532619 961673 2011 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Exponential ATP amplification through simultaneous regeneration from AMP and pyrophosphate for luminescence detection of bacteria
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Exponential ATP amplification through simultaneous regeneration from AMP and pyrophosphate for luminescence detection of bacteria
چکیده انگلیسی
Bacteria monitoring is essential for many industrial manufacturing processes, particularly those involving in food, biopharmaceuticals, and semiconductor production. Firefly luciferase ATP luminescence assay is a rapid and simple bacteria detection method. However, the detection limit of this assay for Escherichia coli is approximately 104 colony-forming units (CFU), which is insufficient for many applications. This study aims to improve the assay sensitivity by simultaneous conversion of PPi and AMP, two products of the luciferase reaction, back to ATP to form two chain-reaction loops. Because each consumed ATP continuously produces two new ATP molecules, this approach can achieve exponential amplification of ATP. Two consecutive enzyme reactions were employed to regenerate AMP into ATP: adenylate kinase converting AMP into ADP using UTP as the energy source, and acetate kinase catalyzing acetyl phosphate and ADP into ATP. The PPi-recycling loop was completed using ATP sulfurylase and adenosine 5′ phosphosulfate. The modification maintains good quantification linearity in the ATP luminescence assay and greatly increases its bacteria detection sensitivity. This improved method can detect bacteria concentrations of fewer than 10 CFU. This exponential ATP amplification assay will benefit bacteria monitoring in public health and manufacturing processes that require high-quality water.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Analytical Biochemistry - Volume 418, Issue 1, 1 November 2011, Pages 19-23
نویسندگان
, , , , , , ,