کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10533661 | 961889 | 2005 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A method for the isolation of covalent DNA-protein crosslinks suitable for proteomics analysis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The covalent crosslinking of protein to DNA is a form of DNA damage induced by a number of commonly encountered agents, including metals, aldehydes, and radiation as well as chemotherapeutic drugs. DNA-protein crosslinks (DPCs) are potentially bulky and helix distorting and have the potential to block the progression of translocating protein complexes. To fully understand the induction and repair of these lesions, it will be important to identify the crosslinked proteins involved. To take advantage of dramatic improvements in instrument sensitivity that have facilitated the identification of proteins by proteomic approaches, improved methods are required for isolation of DPCs. This article describes a novel method for the isolation of DPCs from mammalian cells that uses chaotropic agents to isolate genomic DNA and stringently remove noncrosslinked proteins followed by DNase I digestion to release covalently crosslinked proteins. This method generates high-quality protein samples in sufficient quantities for analysis by mass spectrometry. In addition, the article presents a modified form of this method that also makes use of chaotropic agents for promoting the adsorption of DNA (with crosslinked proteins) to silica fines, markedly reducing the DPC isolation time and cost. These approaches were applied to radiation- and camptothecin-induced DPCs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Analytical Biochemistry - Volume 344, Issue 2, 15 September 2005, Pages 204-215
Journal: Analytical Biochemistry - Volume 344, Issue 2, 15 September 2005, Pages 204-215
نویسندگان
Sharon Barker, David Murray, Jing Zheng, Liang Li, Michael Weinfeld,