کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10566113 972202 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Monitoring of transient cavitation induced by ultrasound and intense pulsed light in presence of gold nanoparticles
ترجمه فارسی عنوان
نظارت بر کاویتاسیون گذرا ناشی از اولتراسوند و نور پالسی شدید در حضور نانوذرات طلا
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی (عمومی)
چکیده انگلیسی
One of the most important challenges in medical treatment is invention of a minimally invasive approach in order to induce lethal damages to cancer cells. Application of high intensity focused ultrasound can be beneficial to achieve this goal via the cavitation process. Existence of the particles and vapor in a liquid decreases the ultrasonic intensity threshold required for cavitation onset. In this study, synergism of intense pulsed light (IPL) and gold nanoparticles (GNPs) has been investigated as a means of providing nucleation sites for acoustic cavitation. Several approaches have been reported with the aim of cavitation monitoring. We conducted the experiments on the basis of sonochemiluminescence (SCL) and chemical dosimetric methods. The acoustic cavitation activity was investigated by determining the integrated SCL signal acquired over polyacrylamide gel phantoms containing luminol in the presence and absence of GNPs in the wavelength range of 400-500 nm using a spectrometer equipped with cooled charged coupled devices (CCD) during irradiation by different intensities of 1 MHz ultrasound and IPL pulses. In order to confirm these results, the terephthalic acid chemical dosimeter was utilized as well. The SCL signal recorded in the gel phantoms containing GNPs at different intensities of ultrasound in the presence of intense pulsed light was higher than the gel phantoms without GNPs. These results have been confirmed by the obtained data from the chemical dosimetry method. Acoustic cavitation in the presence of GNPs and intense pulsed light has been suggested as a new approach designed for decreasing threshold intensity of acoustic cavitation and improving targeted therapeutic effects.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ultrasonics Sonochemistry - Volume 21, Issue 1, January 2014, Pages 268-274
نویسندگان
, , ,