کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10622393 989277 2005 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mineral admixtures in mortars
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی صنعتی و تولید
پیش نمایش صفحه اول مقاله
Mineral admixtures in mortars
چکیده انگلیسی
This work is the second part of an overall project, the aim of which is the development of general mix design rules for concrete containing different kinds of mineral admixtures. The first part presented the separation of the different physical effects responsible for changes in cement hydration when chemically inert quartz powders are used in mortars. This second part describes the development of an empirical model, based on semiadiabatic calorimetry measurements, which leads to the quantification of the enhancement of cement hydration due to the heterogeneous nucleation effect at short hydration times. Experimental results show that not all the admixture particles participate in the heterogeneous nucleation process. Consequently, the concept of efficient surface Seff is introduced in the model. Seff is the total admixture surface S (m2 of mineral admixture/kg of cement) weighted by a function ξ(p). The efficiency function ξ(p) depends only on the replacement rate p and is independent of time, fineness and type of mineral admixture used. It decreases from 1 to 0: Low replacement rates give an efficiency value near 1, which means that all admixture particles enhance the hydration process. An efficiency value near 0 is obtained for high replacement rates, which indicates that, from the hydration point of view, an excess of inert powder does not lead to an increase in the amount of hydrates compared with the reference mortar without mineral admixture. The empirical model, which is mainly related to the specific surface area of the admixtures, quantifies the variation of the degree of hydration induced by the use of inert mineral admixtures. One application of the model, coupled with Powers' law, is the prediction of the short-term compressive strength of mortars.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Cement and Concrete Research - Volume 35, Issue 4, April 2005, Pages 719-730
نویسندگان
, , ,