کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10720721 | 1031344 | 2010 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Analytic result for the one-loop scalar pentagon integral with massless propagators
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The method of dimensional recurrences proposed by Tarasov (1996, 2000) [1], [2] is applied to the evaluation of the pentagon-type scalar integral with on-shell external legs and massless internal lines. For the first time, an analytic result valid for arbitrary space-time dimension d and five arbitrary kinematic variables is presented. An explicit expression in terms of the Appell hypergeometric function F3 and the Gauss hypergeometric function F12, both admitting one-fold integral representations, is given. In the case when one kinematic variable vanishes, the integral reduces to a combination of Gauss hypergeometric functions F12. For the case when one scalar invariant is large compared to the others, the asymptotic values of the integral in terms of Gauss hypergeometric functions F12 are presented in d=2â2ε, 4â2ε, and 6â2ε dimensions. For multi-Regge kinematics, the asymptotic value of the integral in d=4â2ε dimensions is given in terms of the Appell function F3 and the Gauss hypergeometric function F12.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 833, Issue 3, 11 July 2010, Pages 298-319
Journal: Nuclear Physics B - Volume 833, Issue 3, 11 July 2010, Pages 298-319
نویسندگان
Bernd A. Kniehl, Oleg V. Tarasov,