کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10720755 | 1031469 | 2012 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The O(n) loop model on a three-dimensional lattice
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We study a class of loop models, parameterized by a continuously varying loop fugacity n, on the hydrogen peroxide lattice, which is a three-dimensional cubic lattice of coordination number 3. For integer n>0, these loop models provide graphical representations for n-vector models on the same lattice, while for n=0 they reduce to the self-avoiding walk problem. We use worm algorithms to perform Monte Carlo studies of the loop model for n=0, 0.5, 1, 1.5, 2, 3, 4, 5 and 10 and obtain the critical points and a number of critical exponents, including the thermal exponent yt, magnetic exponent yh, and loop exponent yl. For integer n, the estimated values of yt and yh are found to agree with existing estimates for the three-dimensional O(n) universality class. The efficiency of the worm algorithms is reflected by the small value of the dynamic exponent z, determined from our analysis of the integrated autocorrelation times.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 859, Issue 2, 11 June 2012, Pages 107-128
Journal: Nuclear Physics B - Volume 859, Issue 2, 11 June 2012, Pages 107-128
نویسندگان
Qingquan Liu, Youjin Deng, Timothy M. Garoni, Henk W.J. Blöte,