کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10720857 | 1031566 | 2005 | 29 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Dynamical symmetries of semi-linear Schrödinger and diffusion equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Conditional and Lie symmetries of semi-linear 1D Schrödinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrödinger equations become related to the parabolic and almost-parabolic subalgebras of a three-dimensional conformal Lie algebra (conf3)C. We consider non-hermitian representations and also include a dimensionful coupling constant of the non-linearity. The corresponding representations of the parabolic and almost-parabolic subalgebras of (conf3)C are classified and the complete list of conditionally invariant semi-linear Schrödinger equations is obtained. Possible applications to the dynamical scaling behaviour of phase-ordering kinetics are discussed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 723, Issue 3, 12 September 2005, Pages 205-233
Journal: Nuclear Physics B - Volume 723, Issue 3, 12 September 2005, Pages 205-233
نویسندگان
Stoimen Stoimenov, Malte Henkel,