کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10721708 1032899 2018 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Painlevé III′ and the Hankel determinant generated by a singularly perturbed Gaussian weight
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Painlevé III′ and the Hankel determinant generated by a singularly perturbed Gaussian weight
چکیده انگلیسی
In this paper, we study the Hankel determinant generated by a singularly perturbed Gaussian weightw(x,t)=e−x2−tx2,x∈(−∞,∞),t>0. By using the ladder operator approach associated with the orthogonal polynomials, we show that the logarithmic derivative of the Hankel determinant satisfies both a non-linear second order difference equation and a non-linear second order differential equation. The Hankel determinant also admits an integral representation involving a Painlevé III′. Furthermore, we consider the asymptotics of the Hankel determinant under a double scaling, i.e. n→∞ and t→0 such that s=(2n+1)t is fixed. The asymptotic expansions of the scaled Hankel determinant for large s and small s are established, from which Dyson's constant appears.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 936, November 2018, Pages 169-188
نویسندگان
, , ,