کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10721708 | 1032899 | 2018 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Painlevé IIIâ² and the Hankel determinant generated by a singularly perturbed Gaussian weight
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we study the Hankel determinant generated by a singularly perturbed Gaussian weightw(x,t)=eâx2âtx2,xâ(ââ,â),t>0. By using the ladder operator approach associated with the orthogonal polynomials, we show that the logarithmic derivative of the Hankel determinant satisfies both a non-linear second order difference equation and a non-linear second order differential equation. The Hankel determinant also admits an integral representation involving a Painlevé IIIâ². Furthermore, we consider the asymptotics of the Hankel determinant under a double scaling, i.e. nââ and tâ0 such that s=(2n+1)t is fixed. The asymptotic expansions of the scaled Hankel determinant for large s and small s are established, from which Dyson's constant appears.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 936, November 2018, Pages 169-188
Journal: Nuclear Physics B - Volume 936, November 2018, Pages 169-188
نویسندگان
Chao Min, Shulin Lyu, Yang Chen,