کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10998001 1365117 2018 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quality flaw prediction in Spanish Wikipedia: A case of study with verifiability flaws
ترجمه فارسی عنوان
پیش بینی کیفیت نقص در ویکی پدیا اسپانیایی: مورد مطالعه با نقص های قابل اطمینان
کلمات کلیدی
کیفیت اطلاعات، پیش بینی کیفیت نقص، یادگیری نیمه نظارتی، نظارت بر یادگیری، ویکیپدیا،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
In this work, we present the first quality flaw prediction study for articles containing the two most frequent verifiability flaws in Spanish Wikipedia: articles which do not cite any references or sources at all (denominated Unreferenced) and articles that need additional citations for verification (so-called Refimprove). Based on the underlying characteristics of each flaw, different state-of-the-art approaches were evaluated. For articles not citing any references, a well-established rule-based approach was evaluated and interesting findings show that some of them suffer from Refimprove flaw instead. Likewise, for articles that need additional citations for verification, the well-known PU learning and one-class classification approaches were evaluated. Besides, new methods were compared and a new feature was also proposed to model this latter flaw. The results showed that new methods such as under-bagged decision trees with sum or majority voting rules, biased-SVM, and centroid-based balanced SVM, perform best in comparison with the ones previously published.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Processing & Management - Volume 54, Issue 6, November 2018, Pages 1169-1181
نویسندگان
, , , , , ,