کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
11002402 | 1440623 | 2019 | 39 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A data locality based scheduler to enhance MapReduce performance in heterogeneous environments
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper proposes a novel data locality based scheduler which allocates input data blocks to the nodes based on their processing capacity. Also schedules map andreduce tasks to the nodes based on their computing ability in the heterogeneous Hadoop cluster. We evaluate proposed scheduler using different workloads from Hi-Bench benchmark suite. The experimental results prove that our proposed scheduler enhances the MapReduce performance in heterogeneous environments. Minimizes job execution time, and also improves data locality for different parameters as compared to the Hadoop default scheduler, Matchmaking scheduler and Delay scheduler respectively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Future Generation Computer Systems - Volume 90, January 2019, Pages 423-434
Journal: Future Generation Computer Systems - Volume 90, January 2019, Pages 423-434
نویسندگان
Nenavath Srinivas Naik, Atul Negi, Tapas Bapu B.R., R. Anitha,