کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
11002680 1446988 2018 50 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An experimental evaluation of weightless neural networks for multi-class classification
ترجمه فارسی عنوان
یک آزمایش تجربی شبکه های عصبی بی وزن برای طبقه بندی چند طبقه ای
کلمات کلیدی
شبکه عصبی بی وزن، وایسارد، فراگیری ماشین،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
WiSARD belongs to the class of weightless neural networks, and it is based on a neural model which uses lookup tables to store the function computed by each neuron rather than storing it in weights of neuron connections. WiSARD is characterised by a simple implementation and a fast learning phase due to one-way RAM access/lookup mechanism. WiSARD was originally conceived as a pattern recognition device mainly focusing on image processing. In this work we present a multi-class classification method in machine learning domain based on WiSARD, called WiSARD Classifier. The method uses the same binary encoding scheme to transform multivariable data in the domain of real numbers into binary patterns which are the input to WiSARD. The main contribution of this work is an extensive experimental evaluation of WiSARD's classification capability in comparison to methods from the state-of-the-art. For the purpose we conducted many experiments applying nine well known machine learning methods (including the WiSARD Classifier) to seventy classification problems. Cross-validation accuracies were collected and compared by means of a statistical analysis based on nonparametric tests (Friedman, Friedman Aligned Rank, and Quade test) to prove how the WiSARD Classifier is very close in performance to the best methods available in most popular machine learning libraries.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 72, November 2018, Pages 338-354
نویسندگان
, ,