کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
11002740 | 1447919 | 2018 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
GPU-DAEMON: GPU algorithm design, data management & optimization template for array based big omics data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
![عکس صفحه اول مقاله: GPU-DAEMON: GPU algorithm design, data management & optimization template for array based big omics data GPU-DAEMON: GPU algorithm design, data management & optimization template for array based big omics data](/preview/png/11002740.png)
چکیده انگلیسی
In the age of ever increasing data, faster and more efficient data processing algorithms are needed. Graphics Processing Units (GPU) are emerging as a cost-effective alternative architecture for high-end computing. The optimal design of GPU algorithms is a challenging task which requires thorough understanding of the high performance computing architecture as well as the algorithmic design. The steep learning curve needed for effective GPU-centric algorithm design and implementation requires considerable expertise, time, and resources. In this paper, we present GPU-DAEMON, a GPU Data Management, Algorithm Design and Optimization technique suitable for processing array based big omics data. Our proposed GPU algorithm design template outlines and provides generic methods to tackle critical bottlenecks which can be followed to implement high performance, scalable GPU algorithms for given big data problem. We study the capability of GPU-DAEMON by reviewing the implementation of GPU-DAEMON based algorithms for three different big data problems. Speed up of as large as 386x (over the sequential version) and 50x (over naive GPU design methods) are observed using the proposed GPU-DAEMON. GPU-DAEMON template is available at https://github.com/pcdslab/GPU-DAEMON and the source codes for GPU-ArraySort, G-MSR and GPU-PCC are available at https://github.com/pcdslab.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 101, 1 October 2018, Pages 163-173
Journal: Computers in Biology and Medicine - Volume 101, 1 October 2018, Pages 163-173
نویسندگان
Muaaz Gul Awan, Taban Eslami, Fahad Saeed,