کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
11002865 1449962 2019 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Illumination-aware faster R-CNN for robust multispectral pedestrian detection
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Illumination-aware faster R-CNN for robust multispectral pedestrian detection
چکیده انگلیسی
Multispectral images of color-thermal pairs have shown more effective than a single color channel for pedestrian detection, especially under challenging illumination conditions. However, there is still a lack of studies on how to fuse the two modalities effectively. In this paper, we deeply compare six different convolutional network fusion architectures and analyse their adaptations, enabling a vanilla architecture to obtain detection performances comparable to the state-of-the-art results. Further, we discover that pedestrian detection confidences from color or thermal images are correlated with illumination conditions. With this in mind, we propose an Illumination-aware Faster R-CNN (IAF R-CNN). Specifically, an Illumination-aware Network is introduced to give an illumination measure of the input image. Then we adaptively merge color and thermal sub-networks via a gate function defined over the illumination value. The experimental results on KAIST Multispectral Pedestrian Benchmark validate the effectiveness of the proposed IAF R-CNN.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 85, January 2019, Pages 161-171
نویسندگان
, , , ,