کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
11002882 1450007 2018 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Manifold-based constraint Laplacian score for multi-label feature selection
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Manifold-based constraint Laplacian score for multi-label feature selection
چکیده انگلیسی
In recent years, multi-label learning has been increasingly applied to various application areas. As an important pre-processing technique for multi-label learning, multi-label feature selection selects meaningful features to improve classification performance. In this paper, a feature selection method named manifold-based constraint Laplacian score (MCLS) is presented. In MCLS, manifold learning is used to transform logical label space to Euclidean label space, and the similarity between samples is constrained by the corresponding numerical labels. The final selection criterion integrates the influence of both the supervision information and local properties of the data. Experimental results demonstrate the effectiveness of the proposed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 112, 1 September 2018, Pages 346-352
نویسندگان
, , ,