کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
11004069 | 1467706 | 2018 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A dual quaternion approach to efficient determination of the maximal singularity-free joint space and workspace of six-DOF parallel robots
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی صنعتی و تولید
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The avoidance of singularities is critical to design and control of parallel robots. This paper aims at efficient determination of the maximal singularity-free joint space and workspace of a class of six-DOF parallel robots with six kinematic chains of same type. We represent the singularity-free joint space by a 6-cube and determine it firstly. The singularity-free workspace is generated by continuous motion of all active joints in the singularity-free joint space. As a result, the boundary of the workspace can be obtained with simultaneous consideration of position and orientation of the mobile platform. The size relation between the maximal singularity-free joint space and workspace is discussed. To efficiently determine the singularity-free joint space and workspace, we propose dual quaternion-based Jacobian matrices and construct an efficient algorithm. The algorithm detects singularities in a given joint space and simultaneously calculates its corresponding workspace. The computational costs of the proposed algorithm and the traditional one are compared using a 6-UPS parallel robot, leading to 9 seconds and 458 seconds respectively. Finally, both the maximal singularity-free joint space and workspace of a 6-PUS parallel robot are determined to further demonstrate the effectiveness of the new approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanism and Machine Theory - Volume 129, November 2018, Pages 279-292
Journal: Mechanism and Machine Theory - Volume 129, November 2018, Pages 279-292
نویسندگان
XiaoLong Yang, HongTao Wu, Bai Chen, Yao Li, SuRong Jiang,