کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
11005578 1488084 2018 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian data analysis in the phonetic sciences: A tutorial introduction
ترجمه فارسی عنوان
تجزیه و تحلیل داده های بیزی در علوم آوایی: مقدمه آموزش
موضوعات مرتبط
علوم انسانی و اجتماعی علوم انسانی و هنر زبان و زبان شناسی
چکیده انگلیسی
This tutorial analyzes voice onset time (VOT) data from Dongbei (Northeastern) Mandarin Chinese and North American English to demonstrate how Bayesian linear mixed models can be fit using the programming language Stan via the R package brms. Through this case study, we demonstrate some of the advantages of the Bayesian framework: researchers can (i) flexibly define the underlying process that they believe to have generated the data; (ii) obtain direct information regarding the uncertainty about the parameter that relates the data to the theoretical question being studied; and (iii) incorporate prior knowledge into the analysis. Getting started with Bayesian modeling can be challenging, especially when one is trying to model one's own (often unique) data. It is difficult to see how one can apply general principles described in textbooks to one's own specific research problem. We address this barrier to using Bayesian methods by providing three detailed examples, with source code to allow easy reproducibility. The examples presented are intended to give the reader a flavor of the process of model-fitting; suggestions for further study are also provided. All data and code are available from: https://osf.io/g4zpv.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Phonetics - Volume 71, November 2018, Pages 147-161
نویسندگان
, , , , ,