| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 11006639 | 1508596 | 2018 | 23 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Efficient full-spectrum correlated-k-distribution look-up table
												
											ترجمه فارسی عنوان
													جدول تناوبی کلاسیک توزیع شده با کارآیی کامل طیف
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													شیمی
													طیف سنجی
												
											چکیده انگلیسی
												To improve the efficiency of full-spectrum k-distribution look-up tables a new scheme has been devised to store correlated k-values. Unlike the previous look-up table developed by the authors [9,10], from which full-spectrum k-distributions must be determined with multi-step interpolations, the new table stores correlated values, which can be directly retrieved from the new table avoiding several calculations and interpolations, thus saving considerable CPU time during radiative calculations. The same species as in the previous table, i.e., CO2, H2O, CO and soot, are included in the new table, for which the construction details are illustrated. Previous and new tables as well as their implementations are compared in this work. Calculations of radiative heat sources for two scaled flames are employed to validate the new table. Results show that the new table gives results of similar accuracy but at considerably cheaper computational cost than the previous table for both gas mixtures and gas-soot mixtures.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Quantitative Spectroscopy and Radiative Transfer - Volume 219, November 2018, Pages 108-116
											Journal: Journal of Quantitative Spectroscopy and Radiative Transfer - Volume 219, November 2018, Pages 108-116
نویسندگان
												Chaojun Wang, Boshu He, Michael F Modest, Tao Ren, 
											