کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
11017709 1722375 2019 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates
چکیده انگلیسی
Numerical modeling of partial integrodifferential equations of fractional order shows interesting properties in various aspects of science, which means increased attention to fractional calculus. This paper is concerned with a feasible and accurate technique for obtaining numerical solutions for a class of partial integrodifferential equations of fractional order in Hilbert space within appropriate kernel functions. The algorithm relies on the reproducing kernel Hilbert space method that provides the solutions in rapidly convergent series representations for the reproducing kernel based upon the Fourier coefficients of orthogonalization process. The Caputo fractional derivatives are introduced to address these issues. Moreover, the error estimate of the generated solutions is established as well as the convergence of the iterative method is investigated under some theoretical assumptions. The superiority and applicability of the present technique is illustrated by handling linear and nonlinear numerical examples. The outcomes obtained are compared with exact solutions and existing methods to confirm the effectiveness of the reproducing kernel method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 342, 1 February 2019, Pages 280-294
نویسندگان
, ,