کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
11026352 | 1666395 | 2019 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Predicting size-dependent heating efficiency of magnetic nanoparticles from experiment and stochastic Néel-Brown Langevin simulation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک ماده چگال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Magnetic nanoparticles (MNP) have been investigated for generating therapeutic heat when subjected to an alternating magnetic field (AMF) and applied for tumor-confined cancer therapy, so-called magnetic fluid hyperthermia (MFH). For application of MFH, a key requirement is the reduction of MNP dosing by maximizing the heat generation within medically safe limits of the applied AMF. Therefore, reliable and accurate predictions of particle heating are required for the advancement of therapy planning. In this study, we compare size-dependent particle heating data from calorimetric measurements to stochastic Néel-Brown Langevin equation Monte Carlo simulations, finding good agreement between them for various AMF amplitudes and frequencies. Within medical safety constraints of the AMF, our simulations predict maximum particle heating for magnetite particle core sizes above 25â¯nm with effective anisotropy constants K=4000â¯J/m3 at frequencies of â¼100â¯kHz and field amplitudes â¼10â¯mT/μ0. These simulations could help to predict the optimal combination of medically safe AMF parameters and MNP intrinsic properties, such as core size and effective anisotropy, to maximize heat generation and reduce MNP dosing in the application of MFH.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Magnetism and Magnetic Materials - Volume 471, 1 February 2019, Pages 450-456
Journal: Journal of Magnetism and Magnetic Materials - Volume 471, 1 February 2019, Pages 450-456
نویسندگان
Ulrich M. Engelmann, Carolyn Shasha, Eric Teeman, Ioana Slabu, Kannan M. Krishnan,