کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
11026404 | 1666387 | 2018 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Assessing barriers and research challenges for automated fault detection and diagnosis technology for small commercial buildings in the United States
ترجمه فارسی عنوان
ارزیابی موانع و چالش های تحقیق برای تکنولوژی تشخیص خودکار خطا و تشخیص برای ساختمان های تجاری کوچک در ایالات متحده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تشخیص و تشخیص خطا خودکار ساختمان های کوچک تجاری، سیستم های اطلاعات انرژی، ارزیابی بازار،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
Commercial buildings often experience faults that waste energy, decrease occupant comfort, and increase operating costs. For medium and larger commercial buildings (buildings with more than approximately 1000â¯m2 [approximately 10,000â¯ft2] of floor area), studies have shown that automated fault detection and diagnosis (AFDD) tools can help building owners and operators identify and correct faults, improving building performance and producing up to 10% energy savings. However, the existing state of the art in AFDD tools and algorithms poorly serves the needs of commercial buildings less than approximately 1000â¯m2 (approximately 10,000â¯ft2). Using the United States market and building stock as a case study, this article characterizes AFDD needs for small commercial buildings, surveys the types of AFDD tools presently available in the market, identifies gaps and barriers to widespread adoption of AFDD technology in small commercial buildings, and makes recommendations for the future research and development of small buildings AFDD technology.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable and Sustainable Energy Reviews - Volume 98, December 2018, Pages 489-499
Journal: Renewable and Sustainable Energy Reviews - Volume 98, December 2018, Pages 489-499
نویسندگان
Stephen Frank, Xin Jin, Daniel Studer, Amanda Farthing,