کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1119128 1488463 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An Improved K-nearest Neighbor Model for Short-term Traffic Flow Prediction
موضوعات مرتبط
علوم انسانی و اجتماعی علوم انسانی و هنر هنر و علوم انسانی (عمومی)
پیش نمایش صفحه اول مقاله
An Improved K-nearest Neighbor Model for Short-term Traffic Flow Prediction
چکیده انگلیسی

In order to accurately predict the short-term traffic flow, this paper presents a k-nearest neighbor (KNN) model. Short-term urban expressway flow prediction system based on k-NN is established in three aspects: the historical database, the search mechanism and algorithm parameters, and the predication plan. At first, preprocess the original data and then standardized the effective data in order to avoid the magnitude difference of the sample data and improve the prediction accuracy. At last, a short-term traffic prediction based on k-NN nonparametric regression model is developed in the Matlab platform. Utilizing the Shanghai urban expressway section measured traffic flow data, the comparison of average and weighted k-NN nonparametric regression model is discussed and the reliability of the predicting result is analyzed. Results show that the accuracy of the proposed method is over 90 percent and it also rereads that the feasibility of the methods is used in short-term traffic flow prediction.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia - Social and Behavioral Sciences - Volume 96, 6 November 2013, Pages 653-662