کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1131537 1488953 2016 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inferring origin-destination pairs and utility-based travel preferences of shared mobility system users in a multi-modal environment
ترجمه فارسی عنوان
استدلال جفت مبدا ـ مقصد و ابزار مبتنی بر تنظیمات سفر کاربران سیستم تحرک مشترک در یک محیط چندگانه
کلمات کلیدی
برآورد مبدا مقصد؛ تنظیمات مسافر؛ حداکثر انتظار، استنتاج احتمالی؛ انتخاب مسیر چندگانه؛ سیستم به اشتراک گذاری دوچرخه. سیستم تحرک به اشتراک گذاشته شده
موضوعات مرتبط
علوم انسانی و اجتماعی علوم تصمیم گیری علوم مدیریت و مطالعات اجرایی
چکیده انگلیسی


• An expectation maximization methodology of inferring true OD and utility-based travel preferences is developed and applied. True OD is considered as the unknown latent variable and traveler preference is considered as the unknown variable. The methodology observes route/mode choice changes of users due to perturbations (pricing) in the share mobility system with repeated observations.
• The Selective Set Expectation Maximization (SSEM) is developed for data sets with repeated observation. SSEM only searches over choices consistent with all the repeated observations which increases the accuracy of inference results.
• A simulation framework is developed for bike sharing system analysis with heterogeneous travelers in a multi-modal travel environment.
• Promising computation results are obtained in estimating both true ODs and traveler preference distribution with disaggregate data.
• The inferred quantities can inform bike sharing system operations, facilitating inventory rebalancing.

This paper presents a methodological framework to identify population-wide traveler type distribution and simultaneously infer individual travelers’ Origin-Destination (OD) pairs, based on the individual records of a shared mobility (bike) system use in a multimodal travel environment. Given the information about the travelers’ outbound and inbound bike stations under varied price settings, the developed Selective Set Expectation Maximization (SSEM) algorithm infers an underlying distribution of travelers over the given traveler “types,” or “classes,” treating each traveler’s OD pair as a latent variable; the inferred most likely traveler type for each traveler then informs their most likely OD pair. The experimental results based on simulated data demonstrate high SSEM learning accuracy both on the aggregate and dissagregate levels.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Transportation Research Part B: Methodological - Volume 91, September 2016, Pages 270–291
نویسندگان
, , , ,