کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1131601 1488961 2016 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalized Extreme Value models for count data: Application to worker telecommuting frequency choices
ترجمه فارسی عنوان
مدلهای ارزش فوق العاده برای داده های شمارش: کاربرد در انتخاب فرکانس دوربرد کارگر
موضوعات مرتبط
علوم انسانی و اجتماعی علوم تصمیم گیری علوم مدیریت و مطالعات اجرایی
چکیده انگلیسی


• Developed GEV models that subsume standard count models as special cases.
• Examined the ability to retrieve the GEV model parameters using simulations.
• Demonstrated the applicability of the GEV models for analyzing telecommuting choices.

Count models are used for analyzing outcomes that can only take non-negative integer values with or without any pre-specified large upper limit. However, count models are typically considered to be different from random utility models such as the multinomial logit (MNL) model. In this paper, Generalized Extreme Value (GEV) models that are consistent with the Random Utility Maximization (RUM) framework and that subsume standard count models including Poisson, Geometric, Negative Binomial, Binomial, and Logarithmic models as special cases were developed. The ability of the Maximum Likelihood (ML) inference approach to retrieve the parameters of the resulting GEV count models was examined using synthetic data. The simulation results indicate that the ML estimation technique performs quite well in terms of recovering the true parameters of the proposed GEV count models. Also, the models developed were used to analyze the monthly telecommuting frequency decisions of workers. Overall, the empirical results demonstrate superior data fit and better predictive performance of the GEV models compared to standard count models.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Transportation Research Part B: Methodological - Volume 83, January 2016, Pages 104–120
نویسندگان
,